Genetic Optimization of Multidimensional Technological Process Reliability
نویسندگان
چکیده
A technological process (TP) is considered multidimensional if a number of defects of diverse types occur, and they are detected and corrected simultaneously within the process execution [4, 5]. Quality of the TP is estimated by the probability of output zero-defects as well as by the probabilities of zero-defects for each of the defect types. The tasks of TP-optimization involve the choice of such a process structure that will provide the necessary output level of product quality given some certain cost limits [5]. The typical example of such optimization tasks is optimal choice of multiplicity of control-retrofit procedures in a TP. This particular optimization problem is studied in this article. An initial perspective would view this problem as one that may be solved by using known mathematical programming methods. However, taking into account that defects of many diverse types increase the dimensionality of the state space. It means that using classical mathematical programming techniques becomes impractical. Therefore, in this article, the task of TP optimization is solved by using genetic algorithms (GA) [2, 3], which allow to find nearly global optimal solution, and additionally do not require much mathematical backgrounds about optimization. Principal
منابع مشابه
An improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling
Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial,...
متن کاملReliability-Based Robust Multi-Objective Optimization of Friction Stir Welding Lap Joint AA1100 Plates
The current paper presents a robust optimum design of friction stir welding (FSW) lap joint AA1100 aluminum alloy sheets using Monte Carlo simulation, NSGA-II and neural network. First, to find the relation between the inputs and outputs a perceptron neural network model was obtained. In this way, results of thirty friction stir welding tests are used for training and testing the neural network...
متن کاملبهینه سازی سازه های فضاکار بادرنظرگرفتن احتمال خرابی اعضاء و گره ها به کمک الگوریتم وراثتی اصلاح شده
Due to the probabilistic nature and uncertainties of structural parameters, reliability-based optimization will enable engineers to account for the safety of the structures and allow for its decision making applicability. Thus, reliability-based design will substitute deterministic rules of codes of practice. Space structures are of those types that have an exceedingly high range of applicabili...
متن کاملLAGA: A Software for Landscape Allocation using Genetic Algorithm
In this paper, Landscape Allocation using Genetic Algorithm (LAGA), a spatial multi-objective land use optimization software is introduced. The software helps in searching for optimal land use when multiple objectives such as suitability, area, cohesion and edge density indices are simultaneously involved. LAGA is a flexible and easy to use genetic algorithm-based software for optimizing the sp...
متن کاملThe Optimization of the Effective Parameters of the Die in Parallel Tubular Channel Angular Pressing Process by Using Neural Network and Genetic Algorithm Methods
One of reasons that researchers in recent years have tried to produce ultrafine grained materials is producing lightweight components with high strength and reliability. There are disparate methods for production of ultra-fine grain materials,one of which is severe plastic deformation method. Severe plastic deformation method comprises different processes, one of which is Parallel tubular chann...
متن کامل